(t^2+4)+24=180

Simple and best practice solution for (t^2+4)+24=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t^2+4)+24=180 equation:



(t^2+4)+24=180
We move all terms to the left:
(t^2+4)+24-(180)=0
We add all the numbers together, and all the variables
(t^2+4)-156=0
We get rid of parentheses
t^2+4-156=0
We add all the numbers together, and all the variables
t^2-152=0
a = 1; b = 0; c = -152;
Δ = b2-4ac
Δ = 02-4·1·(-152)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{38}}{2*1}=\frac{0-4\sqrt{38}}{2} =-\frac{4\sqrt{38}}{2} =-2\sqrt{38} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{38}}{2*1}=\frac{0+4\sqrt{38}}{2} =\frac{4\sqrt{38}}{2} =2\sqrt{38} $

See similar equations:

| 6x+46+7x-14=214 | | 6x-5=101-6x | | 6x=3(x−4)−x | | x+24+7°=90° | | 3/5u=9 | | x+24+7+90°=90° | | g/10=30 | | $3.50x=$42 | | x+7+90°=90°+24 | | k/3=30 | | 3/5z=14.55 | | 14÷3/11=14x | | 5(x+4)=4(x−6) | | X/3+x=150 | | 3(x−1)=5x+3−2x | | 5/6x=−3/4 | | 5/6t=−3/4 | | 230.00=L(1-d) | | 5x-10÷5=15 | | a+5=−5a | | 2343566666777777777=10000x | | (-6/9)e=8 | | 3(6-6n)=5n+5(-4n+6) | | -5(6+4p)=-5(p+3) | | (3/4)d=1/2 | | 3x-2x=21 | | 5t-15=-15 | | 7(1-3n)-1=6(1-3n)-3n | | -59=6(6a+2)-5(4a-5) | | h/4=(-20)/16 | | 3x+7x/10=85 | | -13-6x=-3(2x-4)+5x |

Equations solver categories